[35] G. N. Stacey and O. W. Merten, “Host Cells and Cell Banking,” in Viral Vectors for

Gene Therapy: Methods and Protocols, vol. 737, O. W. Merten and M. AlRubeai

Eds. Methods in Molecular Biology, 2011, pp. 45–88.

[36] K. M. Hehir et al., “Molecular characterization of replication-competent variants of

adenovirus vectors and genome modifications to prevent their occurrence,” J. Virol.,

vol. 70, no. 12, pp. 8459–8467, Dec. 1996, doi: 10.1128/jvi.70.12.8459-8467.1996

[37] F. J. Fallaux et al., “New helper cells and matched early region 1-deleted adenovirus

vectors prevent generation of replication-competent adenoviruses,” Hum. Gene

Therapy, vol. 9, no. 13, pp. 1909–1917, Sep. 1998, doi: 10.1089/hum.1998.9.13-1909

[38] S. Wu et al., “A single dose of an adenovirus-vectored vaccine provides protection

against SARS-CoV-2 challenge,” Nat. Commun., vol. 11, no. 1, p. 4081, Aug. 2020,

doi: 10.1038/s41467-020-17972-1

[39] J. Vellinga et al., “Challenges in manufacturing adenoviral vectors for global

vaccine product deployment,” Hum. Gene Therapy, vol. 25, no. 4, pp. 318–327,

Apr. 2014, doi: 10.1089/hum.2014.007

[40] M. Havenga et al., “Novel replication-incompetent adenoviral B-group vectors:

high vector stability and yield in PER.C6 cells,” J. Gen. Virol., vol. 87,

pp. 2135–2143, Aug. 2006, doi: 10.1099/vir.0.81956-0

[41] N. B. Mercado et al., “Single-shot Ad26 vaccine protects against SARS-CoV-2 in

rhesus macaques,” Nature, vol. 586, no. 7830, pp. 583–588, Oct. 2020, doi: 10.103

8/s41586-020-2607-z

[42] M. Szelechowski, C. Bergeron, D. Gonzalez-Dunia, and B. Klonjkowski, “Production

and purification of non replicative canine adenovirus type 2 derived vectors,” Jove-J.

Visual. Exp., no. 82, Dec. 2013, Art no. e50833, doi: 10.3791/50833

[43] N. van Doremalen et al., “ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2

pneumonia in rhesus macaques,” Nature, vol. 586, no. 7830, pp. 578–582, Oct.

2020, doi: 10.1038/s41586-020-2608-y

[44] A. Kamen and O. Henry, “Development and optimization of an adenovirus pro-

duction process,” J. Gene Med., vol. 6 Suppl 1, pp. S184–S192, Feb. 2004, doi: 10.1

002/jgm.503

[45] S. M. Elahi, C. F. Shen, and R. Gilbert, “Optimization of production of vesicular

stomatitis virus (VSV) in suspension serum-free culture medium at high cell density,”

J. Biotechnol., vol. 289, pp. 144–149, Jan. 2019, doi: 10.1016/j.jbiotec.2018.11.023

[46] E. Petiot, M. Cuperlovic-Culf, C. F. Shen, and A. Kamen, “Influence of HEK293

metabolism on the production of viral vectors and vaccine,” Vaccine, vol. 33, no.

44, pp. 5974–5981, Nov. 2015, doi: 10.1016/j.vaccine.2015.05.097

[47] H. Hovel, “INFLUENCE OF MEDIUM OSMOLARITY ON VIRUS INFECTED

CELL CULTURES,” Arzneimittel-Forschung, vol. 21, no. 6, pp. 899-&, 1971.

doi://WOS:A1971J712200044.

[48] Y. S. Tsao, R. Condon, E. Schaefer, P. Lio, and Z. Liu, “Development and im-

provement of a serum-free suspension process for the production of recombinant

adenoviral vectors using HEK293 cells,” Cytotechnology, vol. 37, no. 3,

pp. 189–198, 2001, doi: 10.1023/a:1020555310558

[49] H. Kallel and A. A. Kamen, “Large-scale adenovirus and poxvirus-vectored vaccine

manufacturing to enable clinical trials,” J. Biotechnol., vol. 10, no. 5, pp. 741–U124,

May 2015, doi: 10.1002/biot.201400390

[50] L. Z. Xie et al., “Large-scale propagation of a replication-defective adenovirus vector

in stirred-tank bioreactor PER.C6 (TM) cell culture under sparging conditions,”

Biotechnol. Bioeng., vol. 83, no. 1, pp. 45–52, Jul. 2003, doi: 10.1002/bit.10644

[51] K. Yamada, N. Morishita, T. Katsuda, S. Kubo, A. Gotoh, and H. Yamaji, “Adenovirus

vector production using low-multiplicity infection of 293 cells,” Cytotechnology, vol.

59, no. 3, pp. 153–160, Apr. 2009, doi: 10.1007/s10616-009-9208-x

Vectored vaccines

289